Two New Flavonol Glycosides from Knoxia corymbosa

Yu Bo WANG¹, Shuang Xi MEI^{1,2}, Yao Hua WANG², Jing Feng ZHAO¹, Hai Ying REN¹, Jie GUO¹, Hong Bin ZHANG¹, Liang LI¹*

¹School of Pharmacy, Yunnan University, Kunming 650091 ²Department of Biology, Yunnan University, Kunming 650091

Abstract: Two new flavonol glycosides (1 and 2) together with two known flavonoides (3 and 4), were isolated from the whole plant of *Knoxia corymbosa* willd. The structures of 1 and 2 were elucidated as kaempferol-7-O- α -L-arabinosyl-3-O- β -D- β "-acetylglucopyranoside and kaempferol -7-O- α -L-arabinosyl-3-O- β -D- β "-diacetylglucopyranoside respectively.

Keywords: *Knoxia corymbosa*, flavonol glycoside, kaempferol-7-O- α -L-arabinosyl-3-O- β -D-6"-acetylglucopyranoside, kaempferol-7-O- α -L-arabinosyl-3-O- β -D-3",6"-diacetylglucopyranoside.

Knoxia corymbosa willd. is a perennial herbaceous plant distributed in south China. Its whole plant has been used as a folk medicine for the treatment of watery diarrhea, dropsy¹. During our investigation of the chemical constituents of the title plant, four flavonoides **1-4** were isolated from its *n*-BuOH extract. The structures of these compounds were determined as kaempferol-7-O- α -L-arabinosyl-3-O- β -D-6''-acetylgluco pyranoside (**1**), kaempferol-7-O- α -L-arabinosyl-3-O- β -D-3'',6''-diacetylglucopyranoside (**2**), kaempferol-3-O-glucopyranoside (**3**)² and kaempferol-3-O-6''-acetylglucopyranoside (**4**)³ mainly by 1D and 2D NMR experiments. Compounds **1** and **2** are two new flavo nolglycosides.

^{*} E-mail: liliang5758@sina.com

Yu Bo WANG et al.

Compound **1** was obtained as white amorphous powder, $[\alpha]_D^{23} - 20.41$ (c 0.196, DMSO). Its molecular formula was established to be $C_{28}H_{30}O_{16}$ by negative HR-FABMS (found 621.1458, calcd. 621.1455). The peaks of UV λ_{max} (DMSO) 346, 267 nm and IR (KBr) 3473, 3392, 3219 (OH), 1660 (α , β unsaturated C=O) and 1601, 1588 (aromatic ring) cm⁻¹ indicated that **1** was an aromatic compound. ¹H and ¹³C NMR spectra (**Table 2** and **1**) suggested that it has the similar skeleton with kaempferol². The characteristic signals of NMR at $\delta_{\rm H}$ 5.5-3.0 ppm and $\delta_{\rm C}$ 105-60 ppm, accompanied with ¹H-¹H COSY and HMQC experiments indicated the presence of one β -D-glucose and one α -L-arabinose. The correlations of $\delta_{\rm H}$ 5.39 (H-1″) with $\delta_{\rm C}$ 133.8 (C-3) and 5.06 (H-1″″) with 163.2 (C-7) in HMBC showed that the β -D-glucose was linked at 3-OH while the α -L-arabinose was linked at 7-OH. In addition, the correlations of $\delta_{\rm H}$ 4.11 and 3.96 (H-6″) with $\delta_{\rm C}$ 170.1 (OAc) indicated that an acetoxyl substitute at C-6″ position. Therefore, **1** was identified as kaempferol-7-*O*- α -L-arabinosyl-3-*O*- β -D-6″-acetylglucopyranoside.

Compound 2 was obtained as yellow needle prisms, $[\alpha]_D^{25}$ –18.03 (c 0.638, D MSO). Its molecular formula (C₃₀H₃₂O₁₇) was determined by negative HR-FABM S (found 663.1546, calcd. 663.1561). In comparison with compound 1, the spectr a (¹H, ¹³C, COSY, HMQC and HMBC) are quite similar except one more acetyl signal in compound 2. By analysis of the HMBC spectrum, the correlation of δ H 4.86 (H-3") with δ_C 170.0 (OAc) indicated that acetoxyl was linked at C-3" pos ition. Thus, compound 2 was elucidated as kaempferol-7-*O*- α -L-arabinosyl-3-*O*- β -D-3", 6"-diacetylglucopyranoside.

No.	1	2	No.	1	2
C-2	156.4	156.4	1″	101.4	101.1
C-3	133.8	133.6	2″	75.4	72.3
C-4	177.9	177.8	3″	76.5	77.4
C-5	161.2	161.2	4″	70.2	68.0
C-6	99.7	99.7	5″	74.4	74.0
C-7	163.2	163.2	6″	63.1	62.7
C-8	94.8	94.8	3"-O <u>C</u> OCH ₃	/	170.0
C-9	157.4	157.5	3"-OCO <u>C</u> H ₃	/	21.4
C-10	105.8	105.8	6"-O <u>C</u> OCH ₃	170.1	170.1
C-1′	121.0	120.9	6"-OCO <u>C</u> H ₃	20.5	20.5
C-2'	131.2	131.3	1‴	100.5	100.5
C-3′	115.5	115.5	2‴	70.4	70.4
C-4′	160.5	160.6	3‴	72.7	72.7
C-5′	115.5	115.5	4‴	67.8	67.8
C-6′	131.2	131.3	5‴	66.2	66.2

Table 1 The assignment of ¹³C NMR signals of compounds **1** and **2** (125MHz, δ in ppm)

No.	1	2
H-6	6.43 (d, J=1.8 Hz)	6.44 (d, J= 1.9 Hz)
H-8	6.79 (d, J=1.8 Hz)	6.79 (d, J= 1.9 Hz)
H-2'	8.04 (d, J=8.8 Hz)	8.03 (d, J= 9.0 Hz)
H-3'	6.89 (d, J=8.8 Hz)	6.90 (d, J= 9.0 Hz)
H-5'	6.89 (d, J=8.8 Hz)	6.90 (d, J=9.0 Hz)
H-6′	8.04 (d, J=8.8 Hz)	8.03 (d, J= 9.0 Hz)
OH-5	12.57 (s)	12.53 (s)
OH-4′	10.24 (s)	10.24 (s)
H-1"	5.39 (d, J=7.1 Hz)	5.48 (d, J=7.7 Hz)
H-1‴	5.06 (d, J= 6.5 Hz)	5.06 (d, J= 6.7 Hz)

Table 2 ¹H NMR spectral data for compounds **1** and **2** in DMSO- d_6 (500 MHz, δ in ppm)

References

- Agendea Academiae Sinicae Edita, Flora Reipublicae Popularis Sinicae, 1999, Tomus, 71 (2), 1. p.5. W. L. Mei, Y. Yang, W. Ni, C. X. Cheng, *Acta Botanica Yunnanica*, **2000**, *22* (3), 358. I.Merfort, *Phytochemistry*, **1988**, *27* (10), 3281.
- 2. 3.

Received 24 September, 2002